Contribution from the Department of Inorganic Chemistry, Charles University, Prague, Czechoslovakia

Metal Complexes of Thiopolycarboxylic Acids. III. Ethylenedithiodiacetic Acid*

J. Podlaha and J. Podlahová

Received October 19, 1970

The complexes of ethylenedithiodiacetic acid with the first transition row metal ions were investigated in aqueous solution and in the solid state. Relatively weak 1:1 complexes are formed with all ions studied. In solution, the Ni^{2+} and Cu^{2+} ions are capable of forming also 1:2 metal-to-ligand complexes. A number of solid complexes were prepared and from the study of their properties, conclusions were drawn regarding their molecular structure in the solid state and in solution.

Introduction

As a continuation of our examination of the complex-forming ability of thiopolycarboxylic acids,^{1,2} the ligand ethylenedithiodiacetic acid,

$$S-CH_{2}COOH$$

$$| = H_{2}Z$$

$$CH_{2}CH_{2}COOH$$

was studied systematically in the present work. This compound is not a very original ligand and some of its complexes have been already studied.³⁻¹⁰ However, the published data are either qualitative only in nature or they have been obtained under different experimental conditions, giving little if any possibility of comparison. Therefore it was the aim of the present work to study ethylenedithiodiacetate complexes under the same constant experimental conditions as thiodiacetate complexes in the previous papers.^{1,2}

Experimental Section

Materials. Ethylenedithiodiacetic acid was prepared from 1,2-dichloroethane and mercaptoacetic acid.¹¹

- (*) Dedicated to Professor S. Škramovský on the occasion of his 70th birthday.
 (1) Podlaha J. and Podlahová J., Inorg. Chim. Acta, 4, 521 (1970).
 (2) Podlaha J. and Podlahová J., Inorg. Chim. Acta, 4, 521 (1970).
 (3) Ramberg L. and Tiberg A., Ber., 47, 730 (1914).
 (4) Larsson E.: Svensk. Kem. Tid., 51, 42 (1939).
 (5) Tiberg A., Ber., 49, 2024 (1916).
 (6) Tiberg A., Ber., 49, 2029 (1916).
 (7) Tiberg A., Thesis, Univ. of Lund, 1924; C.A., 19, 3253 (1925).
 (8) Suzuki K. and Yamasaki K., J. Inorg. Nucl. Chem., 24, 1093
- (1962).
- (1962).
 (9) Saini G., Ostacoli G., Campi E., and Cibrario N., Gazz. Chim. Ital., 91, 242 (1961).
 (10) James B.R. and Williams R.J.P., J. Chem. Soc., 1961, 2007.
 (11) Ger. Pat. 840,997 (1952); C.A., 47, 6974 (1953).

The final product was recrystallized twice from hot ethyl acetate to give white crystals of m.p. 108° (lit.^{3,11} 108-109°).

Other materials were obtained as described previously.^{1,2}

Apparatus and Methods. These are described in the previous papers.^{1,2} The temperature dependence of magnetic moments was measured on a standard Gouy balance.

Analyses. The ligand content was determined by a direct titration of H₂Z with base towards phenolphtalein or by the bromate-bromide method.² In the presence of certain transition metals (especially Cu and Fe), the bromate-bromide method was found to give somewhat higher results owing to partial oxidation to sulphone. Therefore, the sulphur content was determined gravimetrically as BaSO₄ after fusion with sodium peroxide-sodium carbonate mixture.

Other analytical methods were described in the previous papers.^{1,2}

Calculations. The computerized methods1 A and B based on pH-measurements and the spectrophotometric Benesi-Hildebrand method¹² (C) were used in this work. Moreover, the stability constants of 1:2 complexes were calculated from solubility and absorptivity data according to the equations given below.

The following acid dissociation and stability constants were calculated (charges are omitted):

$$K_{1}^{H} = \frac{[H][HZ]}{[H_{2}Z]} (1) \qquad K_{2}^{H} = \frac{[H][Z]}{[HZ]} (2)$$

$$K_{MeHZ} = \frac{[MeHZ]}{[Me][HZ]} (3) \qquad K_{1} = \frac{[MeZ]}{[Me][Z]} (4)$$

$$K_{2} = \frac{[MeZ_{2}]}{[MeZ][Z]} (5)$$

To calculate K₂ from the solubility data, the following equations were used (Method D): total metal in the saturated solution

$$\mathbf{c}_{\mathsf{Me}} = [\mathsf{Me}] + [\mathsf{MeZ}] + [\mathsf{MeZ}_2] \tag{6}$$

total ligand (pH=6)

(12) Benesi H.A. and Hildebrand J.H., J. Am. Chem. Soc., 71, 2703 (1949).

Podlaha, Podlahová | Metal Complexes of Thiopolycarboxylic Acids

 $c_z = [Z] + [MeZ] + 2[MeZ_2]$ (7)

$$\mathbf{K}_{1} = [\mathbf{M}\mathbf{e}\mathbf{Z}]\mathbf{P}^{-1} \tag{8}$$

(P is the solubility, product of MeZ at standard conditions). From the expressions (5)-(8) simple second order equations for all particles can be derived with the application of the K_1 value obtained previously.

If the absorbancy of a saturated solution is measured, the stability constant K_2 and the molar extinction coefficient ε_2 of the 1:2 complex can be calculated simultaneously as the parameters of a straight line constructed from the experimental data (Method E):

$$\mathbf{y} = \mathbf{\varepsilon}_2^{-1}(\mathbf{K}_2 \mathbf{x} + 1) \tag{9}$$

where

$$\mathbf{x} = \frac{\mathbf{K}_{i} [\varepsilon_{o} (\mathbf{c}_{Me} - \mathbf{P}/\mathbf{K}_{i} - \mathbf{A} + \varepsilon_{i} \mathbf{P}/\mathbf{K}_{i}]}{\mathbf{P} \varepsilon_{o} (\mathbf{c}_{Z} - \mathbf{c}_{Me} + \mathbf{P}/\mathbf{K}_{i}) + 2\mathbf{P} (\mathbf{A} - \varepsilon_{i} \mathbf{P}/\mathbf{K}_{i})}$$
(10)

$$y = \frac{P(c_z + c_{Me} - P/K_1)}{P\varepsilon_o(c_z - c_{Me} + P/K_1) + 2P(A - \varepsilon_1 P/K_1)}$$
(11)

A - absorbancy in 1 cm cell.

 $\varepsilon_{o}, \varepsilon_{1}$ -molar extinction coefficients of metal ion and 1:1 complex respectively (determined previously).

Table I. The dissociation constants of H_2Z and the stability constants of its complexes at 25° and I = 0.1. Standard deviations are given in parentheses.

Constant	Method	H+	V ²⁺	Cr ²⁺	Mn ²⁺	Fe ²⁺	Co ²⁺	Ni ²⁺	Cu ²⁺	Cr ³⁺	Fe ³⁺
рКıн	В	3.17 (0.01)									
рК₂ ^н	В	3.89 (0.01)									
logK _{MeHZ}	Α	. ,	а	а	0.7 (0.1)	2.03 (0.06)	1.95 (0.07)	3.00 (0.03)	3.94 (0.04)		
	С				(017)	(010-)	(,	(2.22)	()	5.38 (0.19)	4.35 (0.22)
logKι	Α		1.40 (0.07)	1.98 (0.03)	1.05 (0.08)	2.74 (0.06)	3.10 (0.04)	4.47 (0.03)	5.66 (0.03)	(0113)	()
	В		1.386	1.994	1.028	2.712	3.166	4.502	5.699		
	Average		1.39	1.99	1.04	2.73	3.13	4.49	5.68		
			(0.07)	(0.03)	(0.08)	(0.06)	(0.04)	(0.03)	(0.03)		
logK ₂ ^b	D				•		•	1.34 (0.16)	2.2 (0.2)		
	E							1.53	1.9		
	Average							(0.15) 1.44 (0.16)	(0.2) 2.1 (0.2)		

^a too low to be calculated. ^b I = 2.0.

Table II. Analytical data of the compounds prepared	Table il.	Analytical	data of	the	compounds	prepared.
---	-----------	------------	---------	-----	-----------	-----------

Compound (m.w.)	Appearance	metal, % calcd. (found)	Z ²⁻ , % calcd. (found)	H₂O(+ OH), % calcd. (found)
Na ₂ Z	white powder	18.09	81.91	
(254.23)	white powder	(17.69)	(81.70)	
NaHZ	white crystals	9.90	90.10	
(232.25)	white crystals	(9.81)	(90.15)	
CrZ.2.5H ₂ O(I)	red powder	17.03	68.21	14.76
(305.28)	led powdet	(17.06)	(68.40)	(14.54) ^a
CrZ.2.5H ₂ O(II)	blue crystals	17.03	68.21	14.76
(305.28)	blue crystais	(17.13)	(68.37)	(14.50) ^a
MnZ	pale pink powder	20.87	79.13	(14.50)
(263.19)	pale plink powder	(19.90)	(79.41)	
FeZ.2H ₂ O	light green crystals	18.61	69.39	12.00
(300.13)	inght groon orjotato	(18.65)	(69.19)	(12.34)
FeZ	pale green powder	21.15	78.85	(12.57)
(264.10)	pare groon powder	(21.00)	(78.94)	
CoZ.2H ₂ O	red-violet crystals	19.43	68.68	11.89
(303.21)	Ted violet erjotale	(19.30)	(68.32)	(12.09)
CoZ	viclet powder	22.06	77.94	(12:05)
(267.19)	there powder	(21.97)	(78.01)	
NiZ.2H ₂ O	green crystals	19.38	68.73	11.89
(302.99)	green erystais	(19.48)	(68.80)	(11.56)
CuZ.2H ₂ O	green needles	20.62	67.68	11.70
(307.83)	BICCHI INCCUICS	(20.41)	(68.09)	(11.50) ^a
CrZOH.2H,O	grayish-blue powder	16.60	66.47	16.93
313.29)	grayion blue powder	(16.44)	(67.05)	(16.51) ^a
FeZOH.2H ₂ O	orange powder	17.59	65.68	16.73
(317.14)	orange powder	(17.30)	(66.01)	(16.69) ^a

^a from the difference.

The expressions (9)-(11) follow from (5)-(8) and the equation

$$A = \varepsilon_{o}[Me] + \varepsilon_{1}[MeZ] + \varepsilon_{2}[MeZ_{2}]$$
(12)

Results

Composition and Stability of Complexes in Solution. The composition of the complexes in solution was determined by the lob method measuring absorbancy at proper wavelength (V²⁺, Fe²⁺, Co²⁺, Ni²⁺, Cu^{2+} , Cr^{3+} , and Fe^{3+}) and conductivity (all divalent cations). All isomolar curves showed only one maximum corresponding to the 1:1 ratio. The formation of 1:1 complex only was implied further from the shape of formation curves calculated from pH-titrations of ligand in the presence of metal ions (10:1 to 1:5 metal-to-ligand ratio): the curves demonstrated the systems to be mononuclear and they limited to $\overline{n} = 1$ (with the exception of Ni²⁺ and Cu²⁺ where a little higher \overline{n} was attained). Therefore, the calculation of stability constants was relatively simple, formation of only a small amount of the mixed species MeHZ⁺ having been taken into account besides the MeZ complex. The MeHZ²⁺ complex is the only one to be considered with tervalent cations, as follows from the Benesi-Hildebrand plots (constructed analogously to the previous paper¹). The formation of Cr^{III} complex is very slow, the equilibrium being not attained until solutions are heated at 80° for several hours and then allowed to stand overnight.

The stability constants and the dissociation constants of the ligand (calculated from its titration curve) are summarized in Table I.

Preparation of Compounds. Sodium salts, NaHZ and Na₂Z, were obtained by the neutralization of a H_2Z suspension with the equivalent amounts of Na-HCO₃ followed by crystallization.

The complexes of general composition $Me^{II}Z$. n-H₂O (n=2 or 0) were obtained as slightly soluble solids from the equimolar amounts of MeSO₄ and Na₂Z solutions. According to experimental conditions, iron and cobalt complexes were obtained either as well developed crystals of dihydrate (by a slow crystallization from 0.02 *M* solutions) or as microcrystalline anhydrous complexes (by mixing 0.2 *M*

Table III. Electronic spectra of H_2Z , its salts, and complexes.

		bers of maxima (ε _M)	Assignment
Compound	Solution	Solid reflectance	
H ₂ Z	52,100(6400)		СТ
•	41,700(440)	39,200	СТ
Na ₂ Z	52,100(6000)		СТ
NaHZ	52,000(6200)		CT
$VZ(H_2O)_2$	12,000(2.0)		⁴ T _{2g} ← ⁴ A _{2g}
	17,900(4.5)		⁴ T _{1g} (F)← ⁴ A _{2g}
	27,700(10)sh		$T_{1g}(P) \leftarrow A_{2g}$
CrZ.2.5H ₂ O(I)	<i>a</i>	19,600	- 18(-)
CrZ.2.5H ₂ O(II)	a	13,300	
	u	16,700sh ^b	⁵T₂ _¢ ←⁵E _s
		35,700	СТ
$FeZ(H_2O)_2$	11,000(4.1)	10,700	⁵ E _e ← ⁵ T _{2g}
102(1120)2	C	38,200	CT 2
FeZ	τ	10,600	⁵ E _g ← ⁵ T _{2g}
1.62		37,900	
$CoZ(H_2O)_2$	8,850(3.4)	d	$\overset{\smile}{}_{1_{2g}}^{1} \overset{1}{\leftarrow} \overset{1}{}_{1g}(F)$
$COZ(H_2O)_2$		16,700	${}^{1}_{2g} \leftarrow {}^{1}_{1g}(\Gamma)$ ${}^{4}A_{2g} \leftarrow {}^{4}T_{1g}(F)$
	17,100(7.3)		$^{2}P,^{2}G,^{4}T_{1g}(P) \leftarrow ^{4}T_{1g}(F)$
	20,200(14.1)	19,700	$\Gamma, G, \Gamma_{ig}(\Gamma) \leftarrow \Gamma_{ig}(\Gamma)$ CT
0-7	С	36,400	
CoZ		16,200	$^{4}A_{2g} \leftarrow ^{4}T_{1g}(F)$
		19,300	$^{2}P, ^{2}G, ^{4}T_{1g}(P) \leftarrow ^{4}T_{1g}(F)$ CT
NEGULON		36,100	
$NiZ(H_2O)_2$	9,450(14.3)	d	${}^{3}T_{2g} \leftarrow {}^{3}A_{2g}$
	15,100(8.9)	14,700	${}^{3}T_{1g}(F) \leftarrow {}^{3}A_{2g}$
	25,300(19.1)	25,000	${}^{3}T_{1g}(P) \leftarrow {}^{3}A_{2g}$
	38,400(6300)	37,100	CT
NiZ ²⁻	9,700(19.4)		³ T _{2g} - ³ A _{2g}
	15,900(12.9)		${}^{3}T_{1g}(F) \leftarrow {}^{3}A_{2g}$
	26,300(34)		${}^{3}T_{1g}(P) \leftarrow {}^{3}A_{2g}$
	34,700(4900)		CT
$CuZ(H_2O)_2$	12,500(74)	13,000	${}^{2}T_{2g} \leftarrow {}^{2}E_{g}$
	30,800(2800)	29,400	CT
	37,300(4200)	38,500	CT
CuZ_2^{2-}	14,200(79)		${}^{2}T_{2g} \leftarrow {}^{2}E_{g}$
	29,400(1800)		CT
	40,000(3400)		СТ
CrZOH.2H₂O	17,000(28.0) *	17,300	⁴ T₂ ₈ ← ⁴ A₂ ₈
	23,200(29.5)	24,400	⁴ T _{1g} (F)← ⁴ A _{2g}
	c	36,800	CT
FeZOH.2H₂O	30,000(71)sh •		CT
	41,600(3200)	37,000	CT

^{*a*} insufficient solubility; ^{*b*} centre of gravity at 14,600 cm⁻¹; ^{*c*} overlapped by a ligand CT band; ^{*d*} outside the apparatus range; ^{*e*} MeHZ²⁺ complex.

Table IV.	Interplanar	distances	and	relative	intensities	of	powder	diagram	lines.	The	compounds	not	entered	here	are a	mor-
phous.											1 - 4					

H₂Z		Na₂Z	Z	NaH	Z	CrZ. 2.5H ₂ (II)	0	Mn	Z	FeZ		CoZ		NiZ	Z	FeZ. 2H ₂ O		CoZ 2H₂O		NiZ 2H₂0		CuZ 2H₂	
d,Å	I	d,Å	I	d,Å	I	d,Å		d,Å	I	d,Å	I	d,Å	I	d,Å	I	d,Å	I	d,Å	I	d,Å	Ι	d,Å	I
5.00	2	5.09	2	4.72	4	7.89	2	8.10	2	8.34	3	8.34	2	8.18	3	8.26	2	8.18	2	8.18	2	7.69	4
4.33	4	4.92	2	4.31	2	5.68	2			6.19	1	6.10	1	6.23	1	6.06	2	6.19	2	6.06	2	5.71	
3.57	2	4.24		3.67	3	4.82	4	4.77		4.72	4	4.72	4	4.76		5.79	4	5.82	4	5.79	4	4.77	
3.35	3	3.40	3	3.49	1	3.81	1	4.15	2	4.17	2	4.17	2	4.18	2	5.24	1	5.24	1	5.24	1	4.33	
3.17	2	3.16	1	3.31	2	3.54	2			3.72	1	3.75	1			5.03	2	5.03	2	5.03	3	3.86	
3.02	1	2.98	3	2.89	3	3.31	2	3.59		3.56	2	3.57	2	3.52		4.05	3	4.05	3	4.07	2	3.48	
2.92	1	2.85	1	2.68	2	3.11	3	3.12	3	3.11	3	3.09	3	3.06	3	3.59	2	3.56	2	3.54	2	3.07	
2.70	3	2.70	1	2.57	2	2.95	2	2.70	2	2.69	2	2.68	2				-			3.35	1	2.90	
2.43	3	2.52		2.46	3	2.75	3	2.58	1							3.18	2	3.17	2	3.17	2	2.51	
2.31	2	2.25	1	2.36	1	2.51	1	2.40	2	2.38	2	2.41	1		-		_	3.04	1		_	2.14	
2.15	2	2.15		2.23	1	2.45	1					2.37	2	2.35	2	2.92	2	2.92	2	2.89	2	1.94	
2.01	1	2.09	2	2.14	1	2.31	2	2.30		2.31								2.70	1		-	1.74	1
1.92	2	1.96	2	2.64	1	2.15	1	2.06	2	2.06	1			2.05	1		1	2.51	2	2.52	2		
1.84	2	1.81		1.96	1	2.06	2			2.00	2	• • •				2.34		·	-				
1.66	2	1.72	1	1.90	2	1.98	1	4.04		1.92	1	2.00	1	1.97		2.31	2	2.31	2	2.32	1		
1.56	1	1.61	2	1.79	1	1.93	2		1	1.78	2	1.76	1	1.76						2.29	1		
1.50	1	1.39	1	1.71	1	1.85	1	1.63	1	1.61	1	1.59	1	1.59	2	_	1	2.17	1	2.15	1		
1.45	1	1.29	1	1.61	2	1.79	2			1.46	1					2.09	1	2.09	1	2.06	1		
		1.24	1	1.31	1	1.69	1									2.00	2	2.00	2	1.97	2		
						1.62	2									1 0 1				1.91	1		
						1.56	1									1.81		1 70	1	1.80	1		
						1.50	1									1.72	2	1.72	1	1.71	2		
						1.42	1									1.62	1	1.61	1	1.61	1		
						1.37	1													1.43	1		
						1.32 1.22	1													1.33	1		

Table V. Magnetic and solubility data (at 25°) of the compounds prepared. The solubility products are calculated by using stability constants from Table I.

Compound	µ _{eff} , B.M.	Soly. product	water $(I=2)$.0)	Solubili	ity, —log(mola Na ₂ Z solutic		on), in	
1	,	$(\tilde{I} = 0.1)$		0.01 <i>M</i>	0.03 <i>M</i>	0.06M	0.10 <i>M</i>	0.30M	0.60M
H ₂ Z	-1.2×10-4	2	3.970 b						
Na₂Z	-1.4×10-4	2	58.22 b						
NaHZ		2	62.30 ^b						
$CrZ.2.5H_2O(I)$	2.76 (298 K))							
	2.10 (196 K))							
	1.04 (77 K))							
$CrZ.2.5H_2O(II)$	4.87	7.67×10-'	3.22	3.38	3.50	3.74	3.71	3.69	3.39
MnZ	5.92	3.80×10⁻⁴	1.85	1.99	2.21	2.42	2.48	2.60	2.52
FeZ.2H ₂ O	5.11								
FeZ	5.34	1.82×10 ⁻⁶	2.89	3.22	3.31	3.30	3.30	3.18	3.07
CoZ.2H₂O	4,79								
CoZ	4.88	6.64×10 ⁻⁷	2.50	2.80	2.82	2.79	2.78	2.67	2.64
NiZ.2H₂O	3.16	4.62×10 ⁻⁷	1.74	1.71	1.64	1.54	1.45	1.25	1.21
CuZ.2H ₂ O	2.19	5.92×10~°	2.12	2.15	2.16	2.09	2.07	2.03	2.00
CrZOH.2H ₂ O	3.85		6.55 °						
FeZOH.2H ₂ O	3.24		5.96 °						

^a molar susceptibility; ^b grams per 100 gr. of solution; ^c I = 0.1

solutions of reactants). These dihydrates tend to an irreversible dehydration even in contact with water. Identical anhydrous iron, cobalt, and, in addition, nickel complexes can be prepared by thermal dehydration (see below). The attempted preparation of a vanadous complex was unsuccessful owing to its high solubility and extreme tendency towards oxidation.

The chromous complex represents a special type of compound, isolated in two isomeric forms: (I), a red precipitate resulting from 0.1 M solutions of Cr-SO₄ and Na₂Z, isolable if handled quickly, and (II), a sky-blue crystalline material formed from the red iso-

mer in contact with its mother solution during several hours. This second isomer is much more stable towards aerial oxidation than the first one. Both compounds possess the same composition, $CrZ \cdot 2.5H_2O$.

The tervalent metal complexes, $CrZOH . 2H_2O$ and FeZOH . $2H_2O$, were prepared by mixing equimolar amounts of metal nitrate and Na₂Z in buffered solutions (pH=3). Both compounds precipitate almost completely, chromium(III) complex but only after heating to 90°.

All compounds prepared were isolated by suction, washed with water, ethanol, and ether, and dried at room temperature. Their composition, appearance,

Table VI	. Se	lected	IR	bands	(cm ⁻¹)	of	the	compounds	prepared.
----------	------	--------	----	-------	---------------------	----	-----	-----------	-----------

Compound	ν(C-S)	v _s (COO)	va(COO)	δ(H ₂ O)	ν(OH)
H ₂ Z	728s	1401s	1685vs		3040s,vb
			1720vs		
D_2Z^a	729s	1398vs	1685vs		2310s,b
			1720vs		,
Na₂Z	729s	1415vs	1590vs		
NaHZ	729s	1391vs	1635m		
			1737s		
CrZ.2.5H₂O(I)	729m	1433vs	1557vs	1635w	3410s,b
$CrZ.2.5H_2O(II)$	709s	1376vs	1585vs	1641sh	3070vs
					3300s
MnZ	676s	1395vs	1588vs		
FeZ.2H₂O	686s	1380vs	1582vs	1678w	3190vs,b
		1398vs			
FeZ	686s	1392vs	1585vs		
CoZ.2H₂O	703s	1382vs	1587vs	1691m	3140vs,b
		1400vs			
CoZ	686s	1398vs	1590vs	1700s	3120vs,b
NiZ.2H₂O	712vs	1386vs	1590vs		
		1399vs			
CuZ.2H ₂ O	712s	1380vs	1602vs	1671sh	3390vs,b
		1406sh			
CrZOH.2H2O	719m	1406sh	1570vs	1688vw	3410vs,b
		1432vs			
FeZOH.2H ₂ O	705m	1400sh	1610vs	1689sh	3430s,b
-		1439vs			

^a H_2Z recrystallized repeatedly from D_2O

Table Vil.	Thermal	decomposition	of	the	compounds	prepared.
------------	---------	---------------	----	-----	-----------	-----------

	Dehydr	Dehydration			sition of Z	Other processes			
Compound	°C DTA-effect	Product	°C D7	A-effect	Product		A-effect	Product	
H_2Z			320	endo		112	endo	melt	
Na₂Z			340	endo					
			395	exo	$Na_2SO_4 + Na_2CO_3$				
NaHZ			280	endo		170	endo	melt	
			320	endo	$Na_2SO_4 + Na_2CO_3$		-	~ ^	
$CrZ.2.5H_2O(1)$	100 endo	CrZ.H ₂ O	190	endo	Cr oxide + sulphate	550	endo	Cr_2O_3	
CrZ.2.5H₂O(11)	100 endo	CrZ.2H₂O	240	endo	Cr oxide+sulphate	560	endo	Cr_2O_3	
	150 endo	CrZ							
MnZ			330	exo		790	endo	Mn₃O₄	
			370	endo	$MnSO_4 + Mn_3O_4$				
FeZ.2H₂O	150 endo	FeZ	300	endo	F 11 11 1	560	endo	Fe ₂ O ₃	
E-7			410	exo	Fe oxide+sulphate	- 7 0		E.O	
FeZ			280	exo	Eo ovido toulaboto	570	endo	Fe ₂ O ₃	
0-7 311 0	105	0.7	420	exo	Fe oxide+sulphate	800	endo	Co ₃ O ₄	
CoZ.2H₂O	165 endo	CoZ	335	exo	$CoSO_4 + Co_3O_4$	800	endo	CoO	
			385 450	endo	$C03O_4 + C0_3O_4$	880	endo	000	
CoZ			350	exo		800	endo	Co ₃ O ₄	
COL			385	exo endo	$CoSO_4 + Co_3O_4$	870	endo	CoO	
			460	endo	C0304 + C0304	870	enuo	000	
NiZ.2H₂O	170 endo	NiZ	290	exo		730	endo	NiO	
112.21120	170 chuo	1412	350	exo	NiSO4 + NiO	750	endo	100	
			450	exo	111501 + 1110				
CuZ.2H ₂ O	160 endof	ollowed by		exo	Cu,Cu ¹ ,Cu ¹¹	730	endo	CuO	
Cull.211/0	100 0100	ononica of iteri	320	exo	oxide + sulphate	150	÷		
CrZOH.2H2O	30-160endo	CrZOH	325	exo	onnie barphate	570	endo	Cr_2O_3	
			440	exo	Cr oxide + sulphate				
FeZOH.2H ₂ O	40-140endo	FeZOH [•]	260	exo		550	endo	Fe ₂ O ₃	
			350	exo	Fe oxide + sulphate				

and analytical data are given in Table II.

Properties of the compounds prepared. The following properties are summarized in Tables III-VII: electronic spectra (Table III), powder diagrams (Table IV), magnetic and solubility data (Table V), selected bands of IR spectra (Table VI), and thermal decomposition data (Table VII). The assignment of electronic and IR spectral bands was carried out as in the previous papers.^{1,2} The spectra of mixed complexes $MeHZ^+$ could not be measured with any reasonable accuracy since these complexes amount just to a minor part of solutions.

Discussion

The character of bonding in the ethylenedithiodi-

417

Ме	Dq, cm^{-1}	B, cm ⁻¹	f	β
V ²⁺	1200	588	1.03	0.77
Cr ²⁺	1460		1.03	
Fe ²⁺	1100		1.10	
Fe ²⁺ Co ²⁺ Ni ²⁺	960	829	1.03	0.74
Ni ²⁺	945	822	1.06	0.76
Cu ²⁺	1250		1.04	
Cu ²⁺ Cr ³⁺	1700	620	1.00	0.60

Table VIII. Crystal field parameters of MeZ(H2O)2 complexes.

acetate complexes is, to a great extent, similar to that of thiodiacetate complexes studied previously. The trend of stability constants (see Figure 1) is also analogous and consistent with the Irving-Williams series. However, as regards a certain affinity of Ni²⁺ and Cu2+ towards sulphur, the relative stability of nickel and copper complexes is raised even more distinctly. A number of additional arguments support the existence of sulphur-metal bonds, mainly: a general enhancement of stability constants comparing with those of α,ω -dicarboxylic acid complexes,¹³ the presence of extra UV bands attributable to a charge transfer by means of this bond, and the distinct shift of the C-S stretching mode of the complexes to lower wavenumbers in comparison with the free ligand. As to the rest, the coordination of sulphur was confirmed by a X-ray single crystal structure determination of NiZ . 2H₂O, the preliminary results of which¹⁴ showed both the Ni-S distances to be near to 2.46 Å.

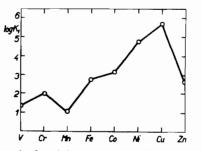
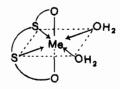
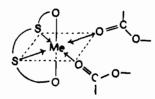


Figure 1. Trend of stability constants of 1:1 ethylenedithiodiacetate complexes in the first transition row. The value of Zn^{2+} was taken from reference 9.

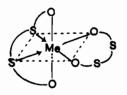

To summarize, the ethylenedithiodiacetate anion can be assumed to act as a tetradentate ligand. The absolute stability of its first transition row metal complexes, is, however, relatively low as a consequence of a limited affinity of these metals towards sulphur.

The electronic absorption and diffuse reflectance spectra are essentially identical, thus demonstrating the coincidence of a molecular structure in solid state and in solution. These spectra can be interpreted in terms of metal ions surrounded by a weak crystal field of octahedral microsymmetry. The values of magnetic moments support this conception. The electronic spectra were fitted to the Tanabe-Sugano


(13) Sillen L.G. and Martell A.E., Stability Constants, Chem. Soc. Spec. Publ. No. 17, London 1964.
(14) Loub J. and Podlahová J., Inorg. Nucl. Chem. Lett., 7, 409 (1971).

diagrams¹⁵ to obtain Dq, B and β crystal field parameters summarized in Table VIII. From the data of this table, the empirical parameter f was calculated¹⁶. According to the average value f = 1.04 the Z²⁻ anion can be placed close to 6 NCS and between water and EDTA in the spectrochemical series.

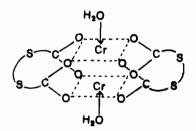
In accordance with all the results, as well as with the preliminary X-ray structure determination, the molecular structure of the MeZ.2H₂O complexes can be presented as follows:



The isomorphous complexes NiZ.2H₂O, CoZ.2H₂O and FeZ.2H₂O posses this structure evidently. According to a spectral evidence¹⁷, the complex CuZ.2H₂O exhibits also six coordination. The second isomorphous set includes the anhydrous complexes MnZ, FeZ, CoZ, and NiZ. Since the spectral and magnetic data indicate that these complexes are octahedral, their coordination polyhedron must be completed by some intermolecular interaction, probably through free carboxyl oxygens, *e. g.*

Such a polymerization may well be responsible for the irreversibility of dehydration.

As regards 1:2 complexes, the second ligand is bound probably only through carboxyl oxygens as the stability of 1:2 complexes is very low.



⁽¹⁵⁾ Figgis B.N., Introduction to Ligand Fields. Interscience Publ., N.Y. 1966.

N.Y. 1966.
 (16) Jørgensen C.K., Absorption Spectra and Chemical Bonding in Complexes. Pergamon Press, Oxford 1962.
 (17) Lever A.B.P., Inorganic Electronic Spectroscopy. Elsevier, Amsterdam 1968.

As in the case of thiodiacetate complexes, chromium(III) and iron(III) complexes of ethylenedithiodiacetic acid seem also be high polymers linked through bridging OH groups.

The two forms of the chromous complex represent an interesting example of magnetic isomerism. The blue form (II) is a magnetically normal high spin complex possessing evidently a structure analogous to the dihydrate type with coordinated sulphur. On the other hand, the red form (I) is antiferromagnetic, shows no bands responsible for a S-Cr bond both in UV and IR spectra, and its colour is reminiscent of that of chromous acetate. The structure of this red form can be viewed as a dimer containing non-coordinated sulphur, and a direct Cr-Cr bond:

The dehydration of both forms is in accordance with the structures proposed. In this respect, ethylenedithiodiacetic acid is an interesting ligand, both forms of its chromous complex being stable in solid state.